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Abstract

In this paper a segregated, implicit projection method is presented and investigated. Although high-Reynolds, turbulent
flow has been a motivating factor, the present study is mainly restricted to the incompressible Navier–Stokes equations.
The proposed method is analyzed for properties like stability, accuracy and consistency, aided by some test examples.
In addition, two different flow cases are simulated to evaluate the ability and efficiency of the method compared with other
results.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Efficient numerical algorithms for high-Reynolds number flows still represent a major challenge, although
several successful methods have been developed. Some of the more efficient methods may be classified as seg-
regated or de-coupled, iterative procedures. Well-known examples are the SIMPLE-like class of algorithms,
which are now in use for both finite difference, finite volume and finite element methods [1–3]. These algo-
rithms can be used both for steady state and time-dependent problems. In the latter case projection methods
and/or fractional step methods are also extensively used. Examples of such methods are the classical Chorin–
Temam projection method [4,5], and similar more advanced projection algorithms [6–9]. Another related
method is the PISO algorithm, which may as well be classified as a predictor–corrector method, although pres-
sure projection is an important part of the algorithm [10,11].

Important goals for any numerical algorithm is to obtain a procedure that is stable, efficient and sufficient
accurate. In practical use good stability is always regarded as important. On the other hand, a very stable
method may give a feeling of reliability that may be an illusion if the method is inaccurate. Still, the opposite
situation, i.e. an accurate explicit algorithm which may easily crash at difficult, advection dominated flows, will
often be regarded as unreliable by the user. The computer/cost efficiency of the method is another important
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quality. Although parallelization techniques have improving the computational speed substantially, the core
algorithm of the method remains very important. This is especially the case in forecast situations, where a
short time window is given for the computation to be completed [12].

These considerations seem to indicate that some sort of segregated, implicit or semi-implicit projection
method may be a good choice. The present paper presents an algorithm of this kind, including analysis of con-
sistency, accuracy and stability, and then shows some computational results. The organization of the paper is
as follows: Section 2 presents the actual governing equations to be solved, in this case the incompressible
Navier–Stokes equations. These equations are discretized (Section 3) using a finite element formulation,
and the segregated, implicit solution algorithm is then presented in Section 3. Key properties of the algorithm
are analyzed in Section 4. Finally, in Section 5 the method is tested on some high-Reynolds number flows and
compared with experimental data.

2. Governing equations

The governing equations are the Navier–Stokes equations for incompressible flow, and we include a scalar
advection–diffusion equation for later use:
Du

Dt
¼ �rP þr � sþ f; r � u ¼ 0; ð1Þ

Dh
Dt
¼ r � ðcrhÞ þ q: ð2Þ
Here ðu; P ; hÞ represent velocity, pressure divided by density, and an arbitrary scalar quantity, respectively.
Furthermore, s is the stress tensor, f and q are source terms, and c is a diffusivity.

The governing equations (1) and (2) are discretized in space by use of a mixed finite element method, and
these semi-discretized equations may be written in compressed form as
M _uþ AðuÞuþ CP ¼ f ; CTu ¼ 0; ð3Þ
Mh

_hþ AhðuÞh ¼ s: ð4Þ
The time integration is performed using a semi-implicit two-niveau formulation, and the discretized equation
system may then be written in the following form:
½ eM þ aAnþa�unþ1 ¼ ½ eM � ð1� aÞAnþa�un � CP nþ1 þ fnþa; ð5Þ
CTunþ1 ¼ 0;

½ eM h þ aAh;nþa�hnþ1 ¼ ½ eM h � ð1� aÞAh;nþa�hn þ snþa: ð6Þ
In these equations M represents the mass matrix, where eM ¼ M=Dt, Anþa ¼ K þ NðunþaÞ is the sum of diffusion
and advection matrices, respectively, C is the gradient matrix, and ðf ; sÞ represent source terms. The variables
ðu; P Þ are re-defined here as nodal vectors for velocity and scaled pressure, and h represents the nodal vector
for a scalar variable. Subscripts indicate time levels, and superscripts are used to distinguish similar matrices in
the momentum and scalar equations. The implicit parameter a is chosen in the interval 1=2 6 a 6 1, and we
use the notation fnþa ¼ afnþ1 þ ð1� aÞfn. The global matrices associated with each velocity component of the
Navier–Stokes equations are given as
Mi ¼
Z

//T; Ki ¼ m
Z
r/ � r/T; Ci ¼ �

Z
r/wT; NiðuÞ ¼

Z
/u � r/T;
where the test/basis function /;w are associated with velocity and pressure, respectively, and m is the kinematic
viscosity. The advection matrix may alternatively be expressed in skew-symmetric form as
Ni;sðuÞ ¼
Z

/u � r/T þ 1

2

Z
//Tr � u;
which is especially useful when analyzing stability and energy conservation properties.
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3. Segregated implicit projection algorithm

In practical applications a numerical method should have good numerical stability and cost/computer effi-
ciency, in addition to an acceptable accuracy. There is no easy way to obtain an ‘optimal’ method, and com-
promises usually have to be made. However, some types of algorithms have proved to be fairly efficient, such
as implicit or semi-implicit, segregated formulations. Examples of such algorithms are the well-known class of
SIMPLE-like iterative methods [2,3], non-iterative pressure-correction procedures like the PISO method
[10,11], and several projection formulations [6–9,13].

In this study we propose a segregated, implicit projection method that is non-iterative, with corrections
within each time-step. For simplicity the algorithm is denoted PMP in the following, reflecting the three main
steps: Pressure prediction, Momentum, Projection. This algorithm has several features in common with the
SIMPLER type of pressure projection method described in [3], but instead of iterations it applies corrections
similar to the PISO method.

3.1. PMP algorithm

The proposed algorithm is given by the following steps:
Predict the pressure and advection velocity via a pseudo-velocity prediction from the system
eM Du� ¼ �Anun þ fn; LP � ¼ CTu�; ð7Þ
where Du� ¼ u� � un, and L represents a scaled discretization of the Laplacian operator, cf. Remarks below.
Compute the velocity field from the (semi)implicit momentum equation
½ eM þ aAnþa�D~unþ1 ¼ �Anþaun þ fnþa � CP �; ð8Þ

where D~unþ1 ¼ ~unþ1 � un, and the advection velocity is given by extrapolation as ûnþa ¼ ð1þ aÞun � aun�1, but
see Remark 2.

Correct the velocity and pressure fields by use of the projection step
LdP nþ1 ¼ CT~unþ1; eM ðunþ1 � ~unþ1Þ ¼ �C dP nþ1; ð9Þ

where the updated pressure is P nþ1 ¼ P � þ dP nþ1.

Compute (semi)implicit equations for other scalar quantities:
½ eM h þ aAh;nþa�Dhnþ1 ¼ �Ah;nþah
n þ snþa; ð10Þ
where Dhnþ1 ¼ hnþ1 � hn.
This algorithm has some similarities to that of Nonino and Comino [17], and it resembles several

other projection methods as well. Apart from the pressure prediction, the method is similar to other
incremental projection methods. However, like pressure-free projection methods, the pressure is predicted
anew at each time-step via the prediction step, and therefore has no memory that could accumulate
errors. This may be considered appealing, and has been a motivating factor in proposing the present
algorithm.

It should be noted that this approach requires an extra pressure equation compared to classic projection
methods. This implies extra cost, although moderate in the present context, see Remark 5 below. Other mod-
ified, pressure-free projection methods, like those given in [14,15], have been developed using the classical pres-
sure correction with only one Poisson equation, while modified boundary conditions are needed in the
prediction step to obtain second-order. Another interesting approach is shown in [16], where an exact frac-
tional step method is developed (no splitting error) using low-order finite volume basis functions which satisfy
discrete incompressibility.

Remarks:

(1) Regarding the implicit parameter (a) two cases are of interest: The fully implicit case, a ¼ 1, especially
suited for steady state computations, and the time-centered case, a ¼ 1=2, for time-accurate computa-
tions. In the first case the advection matrix may be taken as An to simplify calculations.
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(2) The advection velocity is calculated via extrapolation as shown above. Alternatively, we may use the cor-
rection step in a complete Projection 1: ûnþa ¼ un � aDt eM�1CP �. This alternative may give a complete
two-level version.

(3) This algorithm may be applied to both algebraic and continuous formulations. In the algebraic case the
space discretization is performed first, with boundary conditions included. In that case the Laplace
matrix is calculated as L ¼ DtCTM�1

L C, where ML is the lumped mass matrix (for computational rea-
sons). It may be noted that boundary conditions are included in this matrix, hence explicit pressure
boundary conditions are not needed in the algebraic formulation. The continuous formulation is derived
from the continuous form of the equations, and the Laplacian is then calculated from a standard element
assembling procedure. The continuous formulation therefore needs explicitly stated pressure boundary
conditions.

(4) In the continuous formulation a consistent mass matrix can be used throughout, while in the algebraic
formulation the mass lumping in the pressure equation implies the use of ML also in the final projection
step. In our implementation of the algebraic formulation we use ML throughout, although it is possible
to use consistent mass in the momentum equation (but this may require a factor MM�1

L in the pressure
term, see Gresho and Chan [6]).

(5) The extra pressure Poisson equation (PPE) required in the present approach implies some extra cost.
However, for the applications of interest here, typically three-dimensional (3D) turbulent flow with tem-
perature variations included, the main cpu requirement goes to solve these advection–diffusion equations
(ADE). These ADEs are treated implicitly, and the coefficient matrices must be updated due to both
advection terms and variable eddy viscosity. As an example, when solving a 3D Navier–Stokes problem
by the present model, less than 20% of the total cpu is used to solve one PPE. The addition of one extra
PPE increases the total pressure part to roughly 30%, and this implies that the total increase in cpu using
two PPE instead of one is about 20%. Results by Christon [18] for a similar 3D problem, using a semi-
implicit incremental projection method, show that the PPE requires about 25% of the total cpu. In that
case only the symmetric, constant diffusion part of the momentum equation is treated implicitly, and
hence this corresponds reasonable well with our experience. Finally, by including turbulence and temper-
ature in a RANS version of this model, the extra cost is reduced to a fraction of roughly 10%, which is
moderate.

3.2. Implementation

The implementation used is based on Q1Q0 mixed elements, and is an algebraic formulation (necessarily,
due to the Q0 pressure interpolation). As is well known, the Q1Q0 element does not satisfy the inf-sup stability
condition. However, a consistent stabilization can be included to avoid possible problems, cf. [18]. This is
especially advisable when solving the pressure equation iteratively, which is the present case due to three-
dimensional applications.
4. Analysis

In the following section an analysis is given of the consistency, time accuracy, and stability of the proposed
algorithm. Steady state convergence is also investigated and exemplified. For simplicity the mass matrix is
assumed to be lumped, although it is possible to modify this, cf. Remark 4.

4.1. Consistency analysis

It is a fundamental requirement that the proposed algorithm represents an approximation to the actual dif-
ferential algebraic equations, i.e. the semi-discretized Navier–Stokes equations (3). For convenience these
equations are re-written here in the form
M _uþ AðuÞuþ CP ¼ f ; CTu ¼ g; ð11Þ
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where the notation is similar to that in (3), except that the vectors f and g now explicitly include boundary
conditions (f also includes source terms). Boundary conditions imply additional time discretization errors,
and this explicit way of representing them is therefore advantageously for this kind of analysis. This notation
is similar to that employed by Gresho and Chan [6].

Before analyzing the solution algorithm, we may write the solution of (11) in a ‘continuous projection’ form
as follows: From the momentum equation (11a) the pressure may be expressed as
LP ¼ CTM�1½f � AðuÞu� � CT _u;
where L ¼ CTM�1C, and by using the continuity constraint from (11b), we have
P ¼ L�1½CTM�1ðf � AðuÞuÞ � _g�:

When this expression is substituted into the momentum equation, the following formulation is obtained:
_u ¼ QM�1½f � AðuÞu� þM�1CL�1 _g; ð12Þ

where we have introduced a projection matrix defined as
Q :¼ I �M�1CL�1CT: ð13Þ

In order to assure consistency with (11), we therefore need to show that the PMP algorithm is a consistent
approximation to (12), as Dt! 0.

The PMP algorithm (with a ¼ 1 for simplicity) applied to (11) is given by

Prediction:
Mu� ¼ Mun � DtðAnun þ fnÞ; LP � ¼ CTu� � gnþ1: ð14Þ

Momentum:
ðM þ DtAnÞ~unþ1 ¼ Mun þ Dtðfnþ1 � CP �Þ: ð15Þ

Projection:
Munþ1 ¼ M~unþ1 � DtCdP ; CTunþ1 ¼ gnþ1: ð16Þ

The projection step (16) is performed by solving the two equation systems
LdP ¼ CT~unþ1 � gnþ1; unþ1 ¼ ~unþ1 �M�1C dP :
By substituting for dP , this may be expressed as
unþ1 ¼ ~unþ1 �M�1CL�1CT~unþ1 þM�1CL�1gnþ1 ¼ ðI �M�1CL�1CTÞ~unþ1 þM�1CL�1gnþ1

¼ Q~unþ1 þM�1CL�1gnþ1; ð17Þ
where we have applied the projection operator (13).
From the momentum equation (15) the velocity field can be expressed as
~unþ1 ¼ ðI þ DtM�1AnÞ�1½un þ DtM�1ðfnþ1 � CP �Þ�:

For small values of Dt this may be approximated as
~unþ1 ¼ un þ Dt~an � Dt2M�1An~an þOðDt3Þ;
where we have in addition introduced the acceleration
~an :¼ M�1ðfnþ1 � Anun � CP �Þ:

By substitution of the above expression for ~unþ1 back into the projection expression (17), the following is
obtained:
unþ1 ¼Q~unþ1 þM�1CL�1gnþ1

¼un þ DtQ~an þM�1CL�1ðgnþ1 � gnÞ þOðDt2Þ;
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where we have made use of the relation
Qun ¼ un �M�1CL�1gn:
It can be shown that
QM�1C ¼ 0;
and hence the above expression may be written
unþ1 ¼ un þ DtQM�1ðfnþ1 � AnunÞ þM�1CL�1ðgnþ1 � gnÞ þOðDt2Þ:

By letting Dt! 0, it is seen that this expression is consistent with (12), and the algorithm is therefore consis-
tent with the desired system (11). The same conclusion is valid for the time-centered case a ¼ 1=2.

4.2. Time accuracy

It is well known that a Backward Euler (BE) time discretization gives a global error of order OðDtÞ, while
e.g. a Crank–Nicolsen (CN) scheme gives OðDt2Þ. This also holds for direct solution of the coupled Navier–
Stokes equations, and applies to both velocity and pressure (see [13]). Similar results are obtained using incre-
mental projection methods, while most non-incremental projection methods are restricted to OðDtÞ due to a
splitting error (cf. [8,7,20]).

The time accuracy for the PMP method is analyzed by investigating the time-centered ða ¼ 1=2Þ case. The
momentum equation can then be written:
M þ Dt
2

Anþ1=2

� �
~unþ1 ¼ M � Dt

2
Anþ1=2

� �
un � DtCP � þ Dtfnþ1=2;

Munþ1 ¼ M~unþ1 � DtC dP ;
or, by substituting for ~unþ1 from the latter expression:
M þ Dt
2

Anþ1=2

� �
unþ1 ¼ M � Dt

2
Anþ1=2

� �
un � DtCðP � þ dP Þ þ Dtfnþ1=2 �

Dt2

2
Anþ1=2M�1C dP
This is to be compared with the corresponding second-order CN formulation
M þ Dt
2

Anþ1=2

� �
unþ1 ¼ M � Dt

2
Anþ1=2

� �
un � DtCP nþ1 þ Dtfnþ1=2;
implying an additional term in the PMP formulation given by
Dt2

2
Anþ1=2M�1C dP :
This term is OðDt3Þ assuming dP ¼ OðDtÞ (cf. [6]), i.e. the same order of magnitude as the truncation error in
the CN formulation. Hence the time-centered PMP formulation should give second-order accuracy. A similar
result is also obtained by using a second-ordered BDF2 scheme.

In order to test the actual numerical performance, the standard driven cavity flow is used as an example. At
time t ¼ 0 the tangential velocity is set to u ¼ 1 along the upper wall, all other velocity components are zero
along the walls. A Reynolds number of Re = 400 is used, and the time evolution is studied for an initial period
of 2 s, using a mesh of 40� 40 uniform elements. The computed result is illustrated in Fig. 1, showing stream
lines of the velocity field after a time of 2 s. The L2 error estimates are shown in Fig. 2 for velocity and pres-
sure. The reference solution is obtained from a simulation using a very small time-step (1/10 of the smallest
test simulations), similar to the approach in [7,20] (cf. also [13]). As can be seen, second-order accuracy is
indeed obtained for the velocity, while the pressure is first-order accurate. This is in accordance with other
standard second-order projection methods (e.g. [20] with references therein). It is interesting to note that
the magnitude of the pressure error seems to be about 5 times smaller than a comparable P2 result shown
in Armfield and Street [20]. Possible modifications to improve the pressure accuracy is discussed in [21,22],
but generally less than an order of magnitude is obtained.



Fig. 1. Computed streamlines for driven cavity flow at time t ¼ 2 s, Re = 400.
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Fig. 2. L2 error estimates for velocity and pressure, time-centered PMP formulation. Steepness lines for Dt and Dt2 are added as stipled
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4.3. Steady state

Although the present formulation is a time stepping method, it is still important that the solution converges
to a correct steady state solution independent of the chosen time step. In real simulations time variations may
change in a large range. An example may be meteorological predictions, where quasi-steady flows may occur
during larger parts of a simulation. By analyzing the present formulation it may be shown that the steady state
solution is indeed independent of the time step, and is consistent with the steady state formulation. For sim-
plicity the Backward Euler formulation (14)–(16) is used, but the final result is exactly the same for a ¼ 1=2.
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From equation (16a) we have
Fig. 3.
numbe
unþ1 ¼ ~unþ1 � DtM�1CdP ;
or equivalently
ðM þ DtAnÞunþ1 ¼ ðM þ DtAnÞ~unþ1 � DtðM þ DtAnÞM�1C dP

¼ Mun þ Dtfnþ1 � DtCP � � DtðM þ DtAnÞM�1C dP ;
where (15) has been substituted. Division by Dt, and assuming steady state ðunþ1 � unÞ=Dt! 0, this implies
Anunþ1 ¼ fnþ1 � CP nþ1 � DtAnM�1CdP :
But steady state also implies dP ! 0. This can be seen by comparing the prediction and projection steps (14)
and (16). When _u ¼ 0, time indices are irrelevant, and it can be seen that the correction step using P � satisfies
the continuity condition. It follows that dP ¼ 0, and the final result becomes
Au ¼ f � CP ;
which is the correct form of the steady state momentum equation.
In order to test this result, the following simple simulation has been performed: Flow over a step in a chan-

nel with fixed upper and lower walls. The step height is 0.5 m, the total channel height is 1 m, and the length is
set to 8 m. The Reynolds number is Rh ¼ 100 based on the step height, and the inflow profile is specified as
parabolic:
uðyÞ ¼ 16ðy � 0:5Þð1� yÞ; for 0:5 6 y 6 1:0;
where the vertical coordinate (y) is measured from the lower wall, i.e. y ¼ 0:5 at the step. For the chosen Rey-
nolds number a mesh of 50� 100 nodes is fine enough to obtain a fairly accurate space resolution. Fig. 3
Steady state solutions represented as stream function. The upper figure is for a time-step corresponding to a maximum Courant
r of Cr ¼ 0:12, the lower figure with Cr ¼ 24:84.
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shows results from two of these simulations, both terminated after 100 s, where the solutions were regarded as
stationary (due to residual evaluations). The shown results are obtained with very different time increments,
corresponding to maximum Courant numbers of Cr ¼ 0:12 and Cr ¼ 24:84, respectively. The interesting point
is that virtually no difference is observed between these results, and we may therefore conclude that the method
gives a steady state solution that is indeed independent of the time-step applied. Actually, a number of sim-
ulations performed on other problems confirm this conclusion.

4.4. Stability analysis

As illustrated in the previous section, and also experienced in more complicated examples, the numerical
stability of the present algorithm is quite good in practice. Hence, the time increment may be chosen according
to accuracy requirements rather than stability limitations. In the present section we aim to perform a closer
analysis of the formal stability. For this purpose we re-write the governing equations in semi-discretized form
(11) as
M _uþ Kuþ N sðuÞuþ CP ¼ f ; CTu ¼ 0; ð18Þ

where advection and diffusion terms are written out separately, and the skew-symmetric form of the advection
matrix is applied. For simplicity homogeneous Dirichlet boundary conditions are assumed,
unþ1 ¼ ~unþ1 ¼ 0 on C;
and source terms are neglected, f ¼ 0. In addition appropriate initial conditions are assumed. The general
PMP algorithm applied to this formulation is as follows:

Prediction:
Mðu� � unÞ ¼ �DtðK þ NnÞun; LP � ¼ CTu�: ð19Þ
Momentum:
Mð~unþ1 � unÞ þ DtðK þ NnþaÞ~unþa ¼ �DtCP �: ð20Þ
Projection:
Mðunþ1 � ~unþ1Þ þ DtC dP nþ1 ¼ 0; CTunþ1 ¼ 0: ð21Þ
The semi-implicit velocity in (20) is given by ~unþa ¼ a~unþ1 þ ð1� aÞun.
For stability analysis, we use the energy method and investigate the time-centered case a ¼ 1=2. Premulti-

plying equation (20) by ð~unþ1 þ unÞT, yields after some manipulation:
~uT
nþ1M~unþ1 ¼ uT

n Mun �
1

2
Dtð~unþ1 þ unÞTKð~unþ1 þ unÞ � Dtð~unþ1 þ unÞTCP �;
where condition n � ~unþ1jC ¼ 0 has been imposed to eliminate advection terms.
Secondly, (21a) is premultiplied by 2DtðCP �ÞTM�1, resulting in the expression
�2Dt~uT
nþ1ðCP �Þ þ 2Dt2P T

�LdP ¼ 0;
where the continuity condition CTunþ1 ¼ 0 has also been imposed. Finally, (21a) is premultiplied by uT
nþ1, lead-

ing to
uT
nþ1Munþ1 � uT

nþ1M~unþ1 ¼ 0;
where the pressure term has been eliminated due to the continuity constraint and the homogeneous condition
n � unþ1 ¼ 0 on C.

By assembling these results, we obtain:
uT
nþ1Munþ1 ¼ uT

n Mun �
1

2
Dtð~unþ1 þ unÞTKð~unþ1 þ unÞ � Dt2P T

�LdP ;
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where the continuity condition has again been applied. By re-arranging the pressure term and exploiting the
positive-definite diffusion matrix, this implies
Fig. 4.
respect
uT
nþ1Munþ1 þ Dt2P T

�LP nþ1 6 uT
n Mun þ Dt2P T

�LP �: ð22Þ
The pressure prediction is given from (19) as P � ¼ DtL�1CTM�1ðK þ NnÞun. Hence, the estimate (22) is re-
stricted by the previous velocity, and the stability is secured provided appropriate initial conditions.

5. Computational results

5.1. 2D flow around a circular cylinder at Reynolds number RD ¼ 400

This case represents time-dependent flow with separation and vortex shedding. The Reynolds number is
chosen as
RD ¼ U1D=m ¼ 400;
where U1 is the free stream velocity, D is the cylinder diameter, and the computational domain is given by
�5 6 x=D 6 15, �5 6 y=D 6 5. The mesh consists of 11832 nodes, and the minimum distance in the radial
direction from the cylinder surface is 0:005D. With the present Reynolds number this resolution may be some-
what coarse, however, the main purpose here is to test the efficiency and stability of the method.

The present (PMP) method has been applied over a range of time increments, corresponding to maximum
Courant numbers Cr 2 ð1; 5Þ. The largest of these yields less than 50 time-steps over one vortex shedding per-
iod, and is regarded as fairly coarse. Fig. 4 illustrates results from the computations for different time-steps.
The figure shows the time evolution of drag and lift coefficients, defined as
CD ¼
F X

0:5qDU 2
1

; CL ¼
F Y

0:5qDU 2
1
;

where F X and F Y are the in-line and transverse force components, respectively. It is seen that the force coef-
ficients are rather insensitive to variations in time-step within these limits. However, for the largest time-step
-2
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Force coefficients ðCD;CLÞ on a circular cylinder at RD ¼ 400. PMP results for time increments corresponding to Cr ¼ 1:4 and 4:8,
ively.
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used, a weak damping is observed in the coefficients, and the corresponding shedding period is then somewhat
increased.

For comparison the same problem has been simulated with a Projection 1 (P1) formulation using implicit
diffusion and explicit advection [6]. The stability is then limited by Cr 6 1, and the present computation is with
Cr � 0:7. These results are collected in Table 1, including the computer time needed per vortex shedding per-
iod (T). The vortex shedding frequency in the table is given in non-dimensional form as the Strouhal number
St ¼ fD=U1, where f is the frequency [Hz].

It is seen that although the PMP model needs more cpu per time-step, it may gain in efficiency compared to
the simpler P1 method. The limiting factor in this case is accuracy rather than stability; a minimum number of
time-steps is needed to resolve one vortex shedding period.

Corresponding experimental data for mean drag and Strouhal number are about 1.4 and 0.18, respectively
[23]. For this relatively high-Reynolds number three-dimensional turbulence effects are present in the flow,
which may explain some of the discrepancy between computational results and experiments.

5.2. Turbulent flow around a three-dimensional hill

In order to illustrate the ability of the method, we include a more realistic computational example, repre-
sented by a three-dimensional turbulent flow around a hill. The turbulence is modeled by a standard (k; �) clo-
sure, and is here merely taken as given (see e.g. [24] for an extensive analysis). The turbulence equations may
be regarded as additional scalar equations in the algorithm, although this actually implies extra non-lineari-
ties, several complications and more stability demands. However, the main point here is to show the ability of
the algorithm applied to such flows.

The example is based on laboratory experiments [25], and concerns the flow over a hill with shape
Table
Cylind

Model

PMP
PMP
PMP
P1
hðx; yÞ ¼ H
1:04

1þ r4
� 0:083

1þ ðr � r1Þ2=a2
1

� 0:03

" #
;

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ y2Þ

p
=H , r1 ¼ 20:3=H , a1 ¼ 7:6=H , and the hill height is given by H ¼ 22:9 cm.

The inflow profiles are specified using a logarithmic velocity profile and corresponding profiles for turbulent
kinetic energy ðkÞ and dissipation ð�Þ:
u ¼ u�
j

ln
z
z0

� �
; k ¼ maxfC�1=2

l u2
�ð1� z=dÞ2; kming;

� ¼ C3=4
l k3=2=‘; where ‘ ¼ jz

1þ 4z=d
:

Here z is the vertical coordinate, z0 is a roughness parameter, d is the boundary layer thickness, kmin is a min-
imum turbulence, Cl ¼ 0:09; j ¼ 0:4, and u� is the friction velocity. Terrain boundaries are assumed to be
rough, and standard wall conditions are used:
ut

u�
¼ 1

j
ln

d
z0

� �
; un ¼ 0;
1
er flow at RD ¼ 400: Comparison of results

Max Cr CD CL St CPU/T

1.4 1.56 �1:21 0.22 18.6
2.9 1.56 �1:21 0.22 11.6
4.8 1.54 �1:20 0.21 8.5
0.7 1.56 �1:21 0.22 14.7
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where ðut; unÞ are the tangential and normal velocity components at a small distance d from the wall, and z0 is
the roughness parameter. Near-wall conditions for the turbulence variables are given by
Fig. 5.
turbule
k ¼ u2
�

C1=2
l

; � ¼ u3
�

jd
:

For the inflow conditions the boundary layer height is d ¼ 0:3H . The Reynolds number is Re ¼ 104 based on
the hill height, and the roughness parameter is given by z0=H ¼ 0:0003. The computational domain is given by
�6 6 x=H 6 8, �5 6 y=H 6 5, 0 6 z=H 6 7, and the shown computation is performed on a structured mesh
consisting of ð100� 100� 50Þ tri-linear elements, with clustering around the hill and to-wards the boundary
layer.

Computational results are shown in Fig. 5. The upper figure illustrates velocity field at a near-ground sec-
tion, while the lower figure shows velocity and turbulence intensity along the vertical symmetry plane. The
flow is characterized by two symmetric eddies downstream of the hill, as illustrated in Fig. 5a; and along
the symmetry plane these eddies combine to a back-flow circulation (Fig. 5b). A simple way to characterize
these eddies is to specify their center at the downstream hill surface, and to identify the recirculation point
downstream along the symmetry plane. A comparison between experimental results and computations is given
in Table 2 for these quantities, and indicates reasonable agreement.

In order to evaluate the computational efficiency, the convergence rate to steady state is calculated for dif-
ferent time increments. The residual is measured as the relative difference in velocity between each time-step:
�u ¼ kunþ1 � unk=kunk;

where the Euclidean norm kuk ¼

P
iu

2
i

� �1=2
is used. Results from these computations are shown in Fig. 6 for

three different time steps, corresponding to maximum Courant numbers of 2.5, 5, and 10, respectively. For a
Flow around a 3D hill. Upper figure: Velocity field at near-ground level. Lower figure: Vertical symmetry section of velocity and
nce intensity

ffiffiffi
k
p

=U1
� �

.



Table 2
Flow around a three-dimensional hill

Case Vortex center ðx; yÞ=H Recirculation xR=H

Experimental 1:3� 0:7 3.5
Computation 1:2� 0:7 3.2
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Fig. 6. The effect of time increment on the convergence rate to steady state.

Table 3
Comparison of efficiency using different algorithms and step size

Model Cr-number CPU/step Total CPU ð�u ¼ 5� 10�5Þ
PMP 2.5 2.68 402
PMP 5.0 3.06 275
PMP 10.0 4.06 244
P1 0.6 1.57 785
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given convergence tolerance, the number of steps decrease with increasing step size. On the other hand, the cpu
per time-step increases with increasing step size due to more inner iterations in the solver. These results are
collected in Table 3. The last line in the table shows the same characteristics for a standard Projection 1
(P1) method with explicit advection and implicit diffusion. This formulation is therefore restricted by a Cou-
rant number of Cr 6 1, in practice Cr 6 0:6 used with the turbulence model. As can be seen, the PMP model
can be a factor of 3 more efficient than P1 in this case, although it needs more cpu per time-step. In addition, it
should be noted that a standard Projection 1 formulation of this kind has a steady state solution that is depen-
dent on Dt (cf. the analysis in [6]), while the PMP model has no such bias, as previously shown (Section 4.3).

6. Concluding remarks

In this paper a segregated, implicit projection method has been presented and investigated. Although high-
Reynolds, turbulent flow has been a motivating factor, the present study is basically restricted to the incom-
pressible Navier–Stokes equations, which is at the core of any such model. A special property of the method is
that although it resembles incremental projection methods, the pressure is predicted anew for each time-step,
and therefore avoids accumulating memory effects. This has been a motivating factor in proposing the present
alternative algorithm.
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The method has proved to be robust and stable, and it converges to steady state in a reliable manner. The
same order of accuracy can be obtained as for standard second-order projection methods, namely second-
order velocity and first-order pressure. In practical applications all of these properties are regarded as very
important. Compared to a simple semi-implicit projection method (Projection 1) with explicit advection, an
overall increased efficiency by a factor of 2–3 seems possible. Experience with turbulent flows over much more
complicated geometries (not shown here) seems to pronounce this effect, even in comparison with a stabilized
(balancing tensor diffusion) P1 model. However, the use of two pressure Poisson equations implies more cost
per time-step than a classical implicit projection method, although the extra work is a fairly moderate fraction
of the total cost required in applications to three-dimensional turbulent flows.
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